
Building the
composable
enterprise
From legacy monolith to modern,
scalable architecture

Composable business

We’ve reached a fork in the road.

The accelerating pace of business change demands innovation and
adaptation, even as customers and employees increasingly expect
more contextualized and personalized application experiences.

Many organizations have reached a tipping point. Their current
application portfolios were designed to address the challenges of
the past—and are unable to sustain today’s pressures. In many cases,
legacy applications have ceased performing as enablement tools and
have become active obstacles to innovation and growth.

The problem with web monoliths

Shared
codebase

Shared
version

Shared
CI/CD

· Many teams

· One app
Slow delivery Many apps

· Duplications

· Wasted effort, time

· Tech debt

· Inconsistency

2

Composable business

Even as more and more companies feel the pinch of
outgrowing their portfolios, they’re often unable to make
a wholesale switch. The costs and risks associated with a
major architecture change can be staggering, especially
for mid-market companies.

Smart business leaders are taking a new approach
to their application ecosystems. Instead of choosing
between a status quo that isn’t working or a radical
overhaul with high up-front costs, trends point to the
value of a more strategic framework for purchasing,
implementing, and maintaining applications.

And application vendors are taking notice. In contrast to
the monolithic platform models of the past, new offerings
are more modular and consumable through different
delivery channels, touchpoints, and modalities.

For most organizations, these changes require a new
architectural approach: the composable enterprise.

– Gartner

The future of business
is composable.

3

As business needs change, organizations must

be able to deliver innovation quickly and adapt

applications dynamically — reassembling

capabilities from inside and outside the enterprise.

To do this, organizations must understand and

implement the composable enterprise.

Composable business

Composable business

Composability takes a modular approach to applications, allowing
businesses to swap out and reuse components on an as-needed
basis so that needed upgrades and functionality pivots can happen
in waves rather than all at once. As a design approach, composability
enables systems — including IT systems, organizations, products
— to adapt quickly to changes while staying resilient.

True composability leads to stable systems that are easier to
maintain and upgrade over time. Composability makes it possible
for companies to limit technical debt and take advantage of new
technologies as they come along.

Defining composability

4

Composable business

Application architecture has evolved over time as digital needs and
the business landscape have changed. The project-based packaged
application framework popular in the early 2000s gave way to a
product-focused delivery style in the 2010s, followed by today’s
emerging shift to marketplace delivery of composable applications.

What’s new about this approach

5

Composable business

Modular software architecture has been available
before, but what composability offers is a new and
foundational focus on bringing business users to
the table and equipping them to influence features
and functionality of the tools they use in practice.
Where traditionally only professional software
engineers were involved with application selection,
development, and maintenance, composability
involves and enables multidisciplinary teams.

What’s new about this approach

6

– Gartner

Neither business nor IT professionals can meet

the demands of the increasing pace of business

change alone. Composable enterprise architecture

must serve the multidisciplinary teams of business

and IT professionals as its software engineering

constituency.

Composable business

Composable business7

Composability offers today’s businesses the flexibility,
adaptability, and efficiency they need to stay competitive
in rapidly changing business environments.

Old business models hampered by rigid hierarchies and
structures often find it hard to adapt to change. Composability
gives organizations the ability to shift gears, migrate workloads
and functionality quickly, and adopt new ways of working as
circumstances shift.

Benefits of composability

Agility

Traditional Composable

Goal Efficiency Flexibility/Agility

Value Cost leadership with/at scale Highly attuned to business environment

Approach Technology drives efficiency and scale Enable multiple outcomes simultaneously

Governance Top Down Plan-driven; Approval-based; Safe Distributed emergent, empirical, continuous, calculated risk

Sourcing Conventional enterprise services Composable multi-SME teams

Talent Generalists and Specialists “Versatilists”

Culture Values low-risk, predictable execution
Values rapid responsiveness to internal and external
environmental changes

Cycle Times Long (months/quarters/years) Hybrid long and short (due to initial modularity efforts)

Traditional vs Composable: Comparing Approaches

Composable business

Adaptability

Efficiency

To stay profitable, companies continually adopt new
digital platforms and services. Attempts to resist
change can hamper efficiency and innovation and
make teams less productive across the business.
Because composable architecture reduces the
friction associated with change, it simplifies the
path to a digital-first workplace and improves
employee experience.

Security and change management policies may
dictate the use of on-site data storage, private cloud
configuration, and other specific environments.
Building and maintaining those application-specific
architectures can be costly and time-consuming.

By contrast, composable infrastructure operates
exclusively in virtual environments, delivering
significant efficiency gains in terms of resources,
costs, and availability.

8

Composable business9

Challenges of composability

Risk

Control

Skills

If you share modules outside the boundaries of your
organization, you risk spreading your data and intellectual
property into the ecosystem. Again, you’ll need to rely on
your marketplace to apply data sharing policies and only allow
modules in the endpoints that protect internal data integrity.

If you source any software or application modules from
outside your organization, it might be more difficult to
exercise the control that you need over them within your
own space. Your new marketplace must also apply policies
to manage the distribution of data.

To succeed at composability, your team will need new skills,
competencies, and tools, as well as time to learn and gain
experience. For example, teams will require familiarity with
APIs and microservices, as well as communication skills to
deal with a larger and more diverse stakeholder universe.

Complexity

As you move toward composability, the number of modules
you create and orchestrate can rise exponentially. You’ll need
the architecture and tools to manage this complexity, as well
as a “marketplace” to implement advanced forms of discovery
and to manage advanced forms of metadata.

Composable business

Composability requires a new architectural approach. Accepting
disruptive change as the norm can be a mindshift for many
organizations. Composable architecture build resilience into the
model by making things modular, allowing a mix and match approach
to business functions that helps you respond creatively to ensure
positive outcomes.

Source: Gartner

Core design principles for composable architecture

Modularity

Partitioning a domain into managed
component – to scale and control change

Autonomy

Minimizing dependence to components
from each other - to maintain integrity
of change

Discovery

Ability to discover and understand
design opportunities and components
– to guide, track, and secure changes

Orchestration

Prescribing and negotiating interactions
between components – to enable
recomposition and forming process

Composable
Thinking

Composable
Business

Architecture

Composable
Tech

Core design principles for
composable architecture

10

Composable business

Modularity

Discovery

Autonomy

Orchestration

Whether it’s applied to software, organization, or business
model planning, modularity is central to composability.
Whatever building blocks are provided for the composition
define the character of the resulting architecture.

One of the key differentiators of the composable enterprise
experience is that application design and redesign (composition
and recomposition) are performed with direct participation
of business and technology professionals operating as
multidisciplinary teams. That’s why a composable enterprise
application must contain a well-defined set of packaged
business capabilities as independent building blocks—small
enough to maximize agility, but large enough to ensure integrity.

To achieve composability, teams must be able to easily find,
assess, and integrate components. Discoverability requires
clear, complete documentation of operational characteristics,
performance metrics, and resource consumption factors for
each module. This metadata should be easily accessible in
your internal component marketplace.

In the composable enterprise, each modular component must
be self-contained, so that the removal or replacement of
a given component will minimally burden other components
in the application. While complete autonomy may not be
achievable, the goal is for each module to be capable of
operating alone or in new, unanticipated combinations.

Orchestration is the gauge that measures the quality,
openness, safety and controllability of the encapsulation.
Each component in your composable enterprise must be
prepared for composition, integration and governance in
development and runtime environments. Orchestration
also measures how well the components are equipped for
monitoring, tracking, securing, and DevOps operations, as
well as other forms of governance.

11

Composable business

Prioritizing components

By nature, composable architecture implies iteration. As your
organization moves into composability, you’ll need to prioritize
segments to modularize first. Successful transitions usually start
small and grow over time. Applying composability incrementally
will give your business time to demonstrate the value of the
concept and train your teams to operate with a new framework.

To move toward composability, identify which parts of your
organization, such as customer segments or products, change
quickly and often, as you’re likely to see the quickest time to
benefit there. Look for opportunities to improve, as your team’s
skills and competencies grow. Then expand the approach to other
areas over time.

As you go, establish your internal marketplace as a catalog to
institute a controlled environment for a growing collection of
endpoints and use cases.

12

Composable business

As your composable architecture evolves, your technology
principles may shift to keep up. Industry best practices
for building modular enterprise software follow four key
principles known by the acronym MACH. Unlike monolithic
application approaches, MACH principles build toward agility.

Key features of a
composability framework

– Gartner

Monolithic application experiences no longer meet

the requirements, expectations or preferences of

innovative business users and their customers,

now that they demand continuous business agility.

13 Composable business

Composable business

The ideas behind MACH development help your business build
toward greater composability. While it’s not a silver bullet, these
principles can deliver the flexibility you need to stay competitive in
a rapidly shifting business landscape. The following sections unpack
each aspect of MACH principles and outline the pros and cons that
might impact your composable architecture.

Key features of a composability framework

Website
Templates

CMS Plugins

MACHMonolith

MICROSERVICES

HEADLESS

In-store

Website Mobile

Email

Customers

Orders Products

Pricing

14

Source: machalliance.org

API

Composable business

Microservices

Microservices come in all sizes, can be developed and
deployed independently, and can be combined with other
elements to form a single app or larger applications of the
future. Each microservice solution typically serves a single
function. You can think of microservices as a series of stores
in a shopping mall.

M A C H

Mircroservices API-first Cloud-native Headless

– Developer chatter on Reddit

Instead of tearing down the mall [using a shopping

mall as an analogy for microservices] each time

something changes, with microservices you can

add or remove “stores” on demand. If you have

seasonal demand, you can quickly add pop up

shops to handle the volume and tear them down

just as easily without impacting the other stores.

15 Composable business

Composable business

There are upsides and downsides to microservices.

Pros Cons

Easy to scale: Microservices can each be scaled
independently in real-time based on traffic and
demand for each individual service.

Less costly: As each service can be scaled
independently you no longer have to over-provision
server capacity to anticipate demand; this enables
you to optimize your infrastructure costs.

High uptime: Downtime can be isolated
to individual microservices in a decoupled
architecture ensuring continuing or a slightly
reduced service operations in a worst-case
scenario. If one service is down, the others are still
able to operate. Redundancy will need to be baked
in should a critical path microservice go down.

Vendor flexibility: You gain control over your
entire architecture, enabling you to make smaller
decisions to solve specific problems. This allows
you to select best-in-class components for each
area of your business, whether that’s on the
frontend, backend workflow management or logic
processing. You can also seamlessly write and
integrate your own internal microservices that
are independent and under your entire control.

Faster upgrades & release cycles: Each microservice
can be updated independently from each other
enabling the rapid release and roll out of new
features, functionality and bug fixes that do not
affect other areas of the system.

Complex architecture: An organization will require
a technical team to implement and maintain a
microservice-based architecture.

Developer bottlenecks: Complex architecture can
lead to your technical team becoming a bottleneck
when it comes to integrating new services or creating
custom functionality.

Failover redundancy: The key weakness of
microservices comes down to orchestration.
In a decoupled or loosely coupled microservice
architecture, one microservice going down (such as
the cart or checkout) may lead to a cascading effect
within the integration points between microservices.
Failover and redundancy will be required to ensure
these errors are handled gracefully.

Increased operational overhead: While it’s true that
the software itself is likely to be more scalable and
easier to optimize from a server resource perspective,
you will likely need to hire an additional small team of
developers to create new functionality and maintain
this type of architecture.

Mircroservices

16

Composable business

API first

What is an API?

The traditional monolithic approach to software design
focused on creating “out-of-the-box” capabilities, and access
via APIs was typically an afterthought rather than the primary
access point for a given feature. In an API-first solution, APIs
are the bedrock of a product offering, ensuring full coverage
of all features and functionality at a programmatic API level.

An excellent analogy for an API is a restaurant’s wait staff,
who act as the go-between between patrons and the kitchen,
ensuring that orders, modifications, and special requests are
passed on to the chefs.

17

Request

Customers
(Developers) (API) (Application)

Waiter Kitchen

Request

ResponseResponse

Menu (API Catalog)

Composable business

The API-first strategy also has pros and cons to keep in mind.

Pros Cons

Any frontend: You are free to select any frontend
technology or framework while ensuring you’ll
have access to implement any features required.

Better developer experience: A well-designed,
abstract, and consistent API will reduce the learning
curve for developers and mask some of the complex
logic that happens behind the API-layer.

Accelerated time-to-market: With a reduced
learning curve and the ability to implement any
frontend technology or framework, you can deploy
new solutions into the market rapidly.

Developer requirement: You will need a development
team on hand to implement. This may increase your
operational overhead.

API quality: API-first does not mean the API is
well designed. Not all APIs are created equal and a
deeper dive into API and design decisions will need
to be evaluated on a case-by-case basis by your
engineering team.

API first

18

Composable business

Pros Cons

Black-box: The most important drawback in
a purely cloud-native solution is that they are
typically black boxes. This can sometimes be
addressed to some extent by ensuring features
are flexible, integrations are simple, and the
product is well documented.

Limited deployment options: It is unlikely
that a cloud-native vendor will offer private
cloud or on-premise deployment options.

Data security: Security is no longer in your hands
and will need to be managed independently with
each SaaS vendor you decide to purchase from.

Troubleshooting: With cloud-native SaaS
software it can be more difficult to determine
where bugs and faults are located.

Cloud native

Cloud-native refers to software delivered via the cloud
provider’s model by default during product development. This
excludes non-cloud-based software that has been put into the
cloud after initial development. Many software-as-a-service
solutions operate on a cloud native model.

While this approach does offer many benefits, SaaS solutions
do have some drawbacks you’ll need to be aware of.

19

Turn-key: SaaS solutions can be deployed rapidly
right out of the box, so to speak.

Reduced complexity: SaaS abstracts complexities of
hosting solutions by managing this for you.

Increased scalability: SaaS deployed in the cloud
can be auto-scaled to support traffic demands and
match your long-term business growth without the
headaches of minute-by-minute management.

Robust & reliable: Cloud-native applications provide
built-in redundancy by deploying their services to
multiple data centers and availability zones to reduce
latency and increase uptime and performance.

Automatic upgrades: New feature releases are
handled seamlessly on your behalf, reducing overhead.

Composable business20

Pros

Cons

Multi-channel: Being headless allows you to deploy
multiple frontend experiences (heads) across any
channel or device. This enables your brand to connect
with customers at any touch point, wherever they are
in their customer journey.

Flexibility: Headless solutions empower businesses
to select the right frontend tools, frameworks, and
languages that match their development team’s
skillset and their business requirements.

Lightning-fast load times: Leveraging modern
technologies and frameworks can dramatically
increase performance.

New business models: Separating backend business
logic from frontend views and templates enable
businesses to launch new business models and drive
revenue growth. By leveraging a headless approach,
you could rapidly launch new sales channels such as
social commerce, IoT/voice commerce, or curbside
pick-up experiences.

Increased cost and slower time to market:
Frontends must be bought and integrated or built
from scratch. It may take longer create a traditional
grid-based template than to implement a traditional,
template-driven SaaS. On the other hand, creating a
personalized, unique, and differentiated experience is
faster if you start with a headless architecture.

Headless

The term “headless” comes from the concept of separating
the head (frontend) from the body (backend) and connecting
the two pieces through APIs. This principle offers significant
benefits, although it does come with a few drawbacks in terms
of timing.

When considering headless implementations, you’ll want to
consider the following factors.

Composable business21

Making the shift to a composable enterprise is a big decision, and
it’s not right for every organization. Whether you’re considering
the business case for moving toward composability or are already
started down that road, getting an outside perspective can make
your work easier.

Fusion Alliance’s expert composability teams bring decades of
experience in software and application development, DevOps, and
cloud strategy and optimization. We’re leaders in containerization
and composability, but our priority is delivering solutions and
partnerships that meet our clients where they are and propel
them on their best path to success.

Learn more about maintaining a composable enterprise >>

Ask us a question about composability >>

Schedule a Composability Jumpstart workshop to get started, get unstuck, or get to the finish line >>

Get more information about Fusion Alliance’s cloud & technology practice >>

Take the next step

https://fusionalliance.com/maintaining-a-composable-enterprise/
https://fusionalliance.com/maintaining-a-composable-enterprise/#contact
https://fusionalliance.com/maintaining-a-composable-enterprise/#contact
https://fusionalliance.com/technology/

	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

